High Order Finite Element Discretization of the Compressible Euler and Navier-Stokes Equations

نویسنده

  • J. S. Wong
چکیده

We present a high order accurate streamline-upwind/Petrov-Galerkin (SUPG) algorithm for the solution of the compressible Euler and Navier-Stokes equations. The ow equations are written in terms of entropy variables which result in symmetric ux Jacobian matrices and a dimensionally consistent Finite Element discretization. We show that solutions derived from quadratic element approximation are of superior quality next to their linear element counterparts. We demonstrate this through numerical solutions of both classical test cases as well as examples more practical in nature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Convergent Mixed Method for the Stokes Approximation of Viscous Compressible Flow

We propose a mixed finite element method for the motion of a strongly viscous, ideal, and isentropic gas. At the boundary we impose a Navier–slip condition such that the velocity equation can be posed in mixed form with the vorticity as an auxiliary variable. In this formulation we design a finite element method, where the velocity and vorticity is approximated with the divand curlconforming Né...

متن کامل

Efficient Algorithms for High-Order Discretizations of the Euler and Navier-Stokes Equations

Higher order discretizations have not been widely successful in industrial applications to compressible flow simulation. Among several reasons for this, one may identify the lack of tailor-suited, best-practice relaxation techniques that compare favorably to highly tuned lower order methods, such as finite-volume schemes. In this paper we investigate efficient Spectral Difference discretization...

متن کامل

p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier–Stokes equations

We present a p-multigrid solution algorithm for a high-order discontinuous Galerkin finite element discretization of the compressible Navier–Stokes equations. The algorithm employs an element line Jacobi smoother in which lines of elements are formed using coupling based on a p = 0 discretization of the scalar convection–diffusion equation. Fourier analysis of the two-level p-multigrid algorith...

متن کامل

Multigrid Solution for High-Order Discontinuous Galerkin Discretizations of the Compressible Navier-Stokes Equations

A high-order discontinuous Galerkin finite element discretization and p-multigrid solution procedure for the compressible Navier-Stokes equations are presented. The discretization has an element-compact stencil such that only elements sharing a face are coupled, regardless of the solution space. This limited coupling maximizes the effectiveness of the p-multigrid solver, which relies on an elem...

متن کامل

Optimal error estimate of the penalty finite element method for the time-dependent Navier-Stokes equations

A fully discrete penalty finite element method is presented for the two-dimensional time-dependent Navier-Stokes equations. The time discretization of the penalty Navier-Stokes equations is based on the backward Euler scheme; the spatial discretization of the time discretized penalty Navier-Stokes equations is based on a finite element space pair (Xh,Mh) which satisfies some approximate assumpt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001